

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

17 JUNE 2003

Advanced Subsidiary General Certificate of Education **Advanced General Certificate of Education**

MATHEMATICS

Mechanics 2

Tuesdav

Additional materials: Answer booklet Graph paper List of Formulae (MF8) Afternoon

1 hour 20 minutes

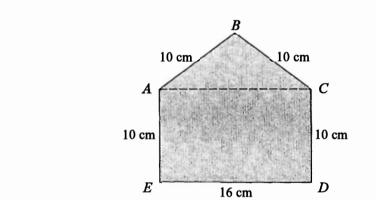
2638

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \,\mathrm{m \, s^{-2}}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES


- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

- 1 A car has a mass of 1000 kg and is moving horizontally at 8 m s^{-1} . The forward force is 3800 N and the car is accelerating at 3 m s^{-2} . Calculate
 - (i) the total resistance to the car's motion, [2]
 - (ii) the power of the engine.

3

- 2 A stone is projected from the top of a vertical cliff 100 m above the sea. The speed of projection is 30 m s^{-1} and the direction makes an angle of 25° above the horizontal. Air resistance is to be ignored.
 - (i) Calculate the time that the stone takes to hit the sea. [4]
 - (ii) Find how far from the foot of the cliff the stone hits the sea.

A uniform lamina consists of a rectangle and an isosceles triangle, as shown in the diagram. Each side of the lamina is of length 10 cm, except for *DE* which is 16 cm.

- (i) Show that the distance of the centre of mass of the lamina from *B* is 9.38 cm, correct to 3 significant figures. [3]
- (ii) The lamina is freely suspended from A. Calculate the angle that AC makes with the vertical.

[2]

[2]

[2]

- (iii) The mass of the lamina is 1.3 kg. A particle of mass m kg is attached to the lamina at B. When freely suspended from A, the lamina is now in equilibrium with AC vertical. Find m. [2]
- 4 A particle of mass 0.5 kg is rotating on the smooth interior surface of a fixed hollow sphere of radius 5 m. The particle rotates in a horizontal circle at a height of 2 m above the lowest point of the sphere. Calculate

(i)	the magnitude of the force exerted by the sphere on the particle,	[3]
(ii)	the angular speed of the particle,	[4]
(iii)	the time for one complete revolution.	[2]

2638/S03

- 5 A hill is 200 m long and is inclined at a constant angle of 10° to the horizontal. A cyclist and her bicycle have a combined mass of 75 kg.
 - (i) The cyclist starts to go down the hill at a speed of 15 m s^{-1} . She freewheels but experiences a constant air resistance and arrives at the bottom of the hill at a speed of 18 m s^{-1} . Calculate the magnitude of the air resistance. [4]

On another occasion, the same cyclist approaches the same hill from the opposite direction. This time there is no air resistance. She maintains a constant speed of 6 m s^{-1} while going up the hill.

(ii) Find the power of the cyclist.

[4]

At the top of the hill, the cyclist reaches level ground and continues to work at the same rate. The air resistance is now 50 N.

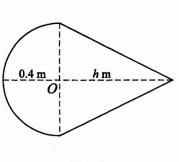
- (iii) Find the acceleration of the cyclist just after she reaches the level ground. [2]
- 6 Two small spheres A and B, with masses 0.2 kg and m kg respectively, lie at rest on a smooth horizontal surface. A is projected directly towards B at a speed of 8 m s^{-1} and hits B. The direction of motion of A is reversed in the collision. The speeds of A and B after the collision are 2 m s^{-1} and 4 m s^{-1} respectively. The coefficient of restitution between A and B is denoted by e.
 - (i) Show that

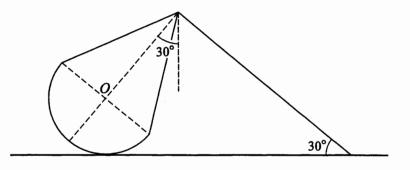
(a)
$$m = 0.5$$
, [2]

(b)
$$e = 0.75$$
. [2]

- (ii) B continues to move at 4 m s^{-1} and strikes a wall at right angles. The coefficient of restitution between B and the wall is also 0.75. Calculate the magnitude of the impulse when B hits the wall. [3]
- (iii) After B rebounds from the wall there is a second impact between A and B. Calculate the final speeds of A and B. [5]

[Question 7 is printed overleaf.]




Fig. 1

A toy consists of a uniform solid hemisphere of weight 30 N and a uniform solid cone of weight 5 N. The cone has height h m. The solids have the same base radius 0.4 m and are joined so that their plane faces coincide. The centre of the common face is the point O (see Fig. 1). The centre of mass of the toy lies inside the hemisphere and is at a distance of 0.1 m from O.

[5]

(i) Show that h = 0.8.

7

One end of a light inextensible string is attached to the vertex of the cone and the other end is tied to a fixed point on rough horizontal ground. The toy rests in equilibrium on the ground with its axis of symmetry making an angle of 30° with the vertical. The string makes an angle of 30° with the horizontal (see Fig. 2). The tension in the string is T N and the frictional force acting on the toy is F N.

(ii) By taking moments about O, show that 16T + 8F = 35. [3]

(iii) Find another equation connecting T and F. Hence calculate the tension and the frictional force. [4] ± 1 in 3rd sig fig

5 √ 5 AG

1	(i)	$3800 - R = 1000 \ge 3$	M1		use of F=ma (needs 3 parts)	1
		R = 800 N	A1	2		
	(ii)	$\mathbf{P} = \mathbf{F}\mathbf{v}$	M1		3800x8 only unless MR	
		$P = 30 \ 400 \ W$	A1	2	or 30.4 kW 4	ŀ

2	(i)	$-100 = 30\sin 25^\circ t - 4.9t^2$ or 2 equations	M1		or for 2 sections of time
		correct quad or via 2 correct equations	A1		B1 1.29 (up) / 2.59 (across)
		for attempting to solve quad or 2 equat's	M1		B1 4.70(down)/3.41(down)
		t = 5.99 or 6.00	A1	4	could be 6.00/6.0/6
	(ii)	$s = 30\cos 25^{\circ} x 5.99$	M1		
		s = 163 m	A1 √	2	\checkmark on their t
		((Alternatively for (i) & (ii)			
		$y = x \tan \theta - g x^2 \sec^2 \theta / 2 V^2$ aef	((B1		correct formula
		sub y = -100 in equ of traj	M1		
		Solve quad.	M1		
		Solve to give $x = 163$	A1		
		Use $s = ut$ for horizontal motion	M1		
		t=5.99 or 6.00))	A1√))		\checkmark on their x 6

3	(i)	use of cof m2/3 along median of \triangle fromB	M1		
		(160+48)d=160x(6+5)+2/3x6x48	M1		or $208 \ \overline{y} = 160 \text{x5} + 48 \text{ x12}$
					$(\bar{y} = 6.615)$ negatives OK
		d = 9.38 cm	A1	3	AG (no incorrect w. seen)
	(ii)	$\tan\theta = 3.38/8$ (or 3.38/5)	M1		or 8/3.38, 5/3.38 not sin/cos
		θ=22.9°	A1	2	
	(iii)	mx6=3.38(5) x 1.3	M1		or (m+1.3)x6=1.3x9.38
		or 1x5=48/160x2+6m			(m+1.3)x10=1x5+.3x12+16m
					(m+1.3)x6=1x11+0.3x4
		m = 0.733	A1	2	7

4	(i)	$R\cos\theta = 0.5 \ge 9.8$	M1		for resolving vertically
		$3/5R = 0.5 \times 9.8$	A1		correct use of $\cos\theta = 3/5$
		R = 8.17 N	A1 √	3	\checkmark for use of sin θ (6.125)
	(ii)	r = 4	B1		
		$R\sin\theta = 0.5 \text{ x } 4 \text{ x } \omega^2 \text{ (mr}\omega^2 \text{ can be wrong)}$	M1		for resolving horizontally
		$\omega = f(8.17 \times 0.8 / 0.5 \times 4)$	M1		solve ω from mr ω^2 (correct)
		$\omega = 1.81 \text{ rads}^{-1}$	A1	4	
	(iii)	$T = 2\pi/1.81$	M1		
		T = 3.47 or 3.48 s	A1 √	2	\checkmark their ω 9

2638

Final Mark Scheme

June 2003

5	(i)	mgh=75x9.8x200xsin10°	B1		M1 for $18^2 = 15^2 + 2ax200$
		work done against resistance=200R	B1		A1 a = 0.2475
		$0.5x75x15^2 + mgh = 0.5x75x18^2 + 200R$	M1		M1 75gsin10°-R=75x0.248
		R=109 N	A1	4	
	(ii)	D=75x9.8xsin10°	M1		B1 tot. WD=75x200gsin10°
		D = 128 (may be implied)	A1		B1 $t = 200/6 (33.3)$
		P=127.6x6	M1		M1 power = WD/t
		P=766 W	A1 √	4	√ their Dx6 ,theirWD/their t
	(iii)	77.6=75a	M1		use of "F=ma"with
					driv.f–R
		a=1.03 or 1.04 ms ⁻²	A1 √	2	\checkmark on their (D-50)/75 10

6	(i)a)	$8 \ge 0.2 = 4m - 2 \ge 0.2$	M1		use of cons. of mom.
		m = 0.5	A1	2	AG
	b)	use of rel. separation/rel. approach	M1		
		$e = \frac{3}{4}$	A1	2	AG
	(ii)	B's speed = 3 $(accept - 3)$	B1		may be implied
		I = 0.5 x 30.5 x 4	M1		use of cons. of mom.
		I = 3.5 Ns	A1	3	
	(iii)	2x0.2 + 3x0.5 = 0.2x + 0.5y	M1		use of cons. of mom.
		$^{3}/_{4} = \mathbf{x} - \mathbf{y}$	M1		use of coeff of rest.
		solving sim equ	M1		one soln. sufficient
		$x = 3.25 \text{ ms}^{-1}$ (A); $y = 2.5 \text{ ms}^{-1}$ (B)	A1+A1	5	Max A1 only any negatives
					in final answer 12

7	(i)	centre of mass of cone = $\frac{1}{4}h$	B1		
		" " " hemisphere = $3/8 \ge 0.4$	B1		(0.15)
		$0.05 \ge 30 = (\frac{1}{4}h + 0.1) \ge 5$	M1		M(G)
		or $= 0.3 \times 5$ if h is assumed to be 0.8	A1		G is c. of m. of toy
	alternatively	$0.05 \ge 35 = (\frac{1}{4}h + 0.15) \ge 5$	(M1)		M(H)
		or $= 0.35 \text{ x} 5$ if h is assumed to be 0.8	(A1)		H is c. of m. of hemisp.
	or	$0.3x35 = 0.25x30 + (0.4 + \frac{1}{4}h)x5$	(M1)		M(A)
		or $= 0.25x30 + 0.6x5$ h is ass'd to be 0.8	(A1)		A is hemisphere base pt
	or	$(h+0.1)x35=(h+0.15)x30 + Ah \ge 5$	(M1)		M(B)
		or 0.9x35=0.95x30+0.6x5 if h is ass'd 0.8	(A1)		B is vertex of cone
	or	$0.1 \ge 35 = 0.15 \ge 30 - \frac{1}{4} h \ge 5$	(M1)		M(O)
		or $= 0.15 \times 30 - 0.2 \times 5$ if h is ass'd to be 0.8	(A1)		
	or	$(\frac{1}{4}h+0.1)x35 = (\frac{1}{4}h+0.15)x30$	(M1)		M(C)
		or 0.3x35=0.35x30 if h is ass'd to be 0.8	(A1)		C is c. of m. of cone
					AG (if not derived then matching values must
		h = 0.8 (can be implied by verification)	A1	5	be demonstrated)
	(ii)	$Tx0.8 + Fx0.4 = 35x0.1xsin30^{\circ}$	M1		taking moments
		or equivalent	A1		correct equation
		16 T + 8 F = 35	A1	3	AG CWO
	(iii)	$T\cos 30^\circ = F$	B1		
		$16 \text{ F} \div \cos 30^{\circ} + 8 \text{F} = 35$	M1		<pre>solve sim equ(lsoln.ok)</pre>
		F = 1.32	A1		
		T = 1.53	A1	4	12